LYM-type inequality for t-intersecting antichains in linear lattices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharpening the LYM inequality

More detailed information about the s t ructure of Sperner families can be obtained by considering their level sequences. The level sequence of a family 4 , f ( ~ ) = {fi(Y)}, has f i (~) equal to the number of members of ~ with exac t ly ' / e l emen t s . Sperner 's theorem asserts tha t ~fi(2~)<_ ([~j) . A stronger restriction on the level i sequence was proved independent ly by Lubell, Yama...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A probabilistic proof for the lym-inequality

Here we give a short, inductive argument yielding (1). First note that (1) is evident if n = 1, and also if X E S (in the latter case necessarily 9 -= 1.x) holds). Now assume (1) is true for n 1, !F is an antichain and X 4 9. Let x be a random variable which takes the values 1,. . . , n; each with probability l/n. Let us define s(x) = {FE ZF: x9! fl. For any function g(x), we denote by E(g(x)) ...

متن کامل

Partitioning Boolean lattices into antichains

Let f(n) be the smallest integer t such that a poset obtained from a Boolean lattice with n atoms by deleting both the largest and the smallest elements can be partitioned into t antichains of the same size except for possibly one antichain of a smaller size. In this paper, it is shown that f(n)6 b n=log n. This is an improvement of the best previously known upper bound for f(n). c © 2002 Elsev...

متن کامل

Bijective mapping preserving intersecting antichains for k-valued cubes

Generalizing a result of Miyakawa, Nozaki, Pogosyan and Rosenberg, we prove that there is a one-to-one correspondence between the set of intersecting antichains in a subset of the lower half of the kvalued n-cube and the set of intersecting antichains in the k-valued (n− 1)-cube.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2015

ISSN: 1674-7216

DOI: 10.1360/n012015-00064